Types of Lattices

Types of Lattices
Lattices are either:
1. Primitive (or Simple): one lattice point

“Lattice points are arranged such that each has identical surroundings”

per unit cell. When we arrange lattice points to fill space in the most efficient manner
2. Non-primitive, (or Multiple) e.g. double, while maintaining the requirement concerning identical surroundings

triple, etc.: more than one lattice point
per unit cell.
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14 Bravais Lattices

First we must know the number of lattice points within a unit cell

The number of lattice points 1s given by the equation:

N, N, N
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e o o N;= number of lattice points in cell interior (belong to 1 cell)
o & N;= number of lattice points on cell faces (shared by 2 cells)
. % i N.= number of lattice points on cell corners (shared by 8 cells)
N, = number of lattice points quceII edges (shared by 4 cells)
¢ i = interior
e o ¢4 o o °? e o o o f= face ‘ y
*When repeated by successive translations & =edge" ——— | s
reproduce periodic pattern. i ' »b
*Multiple cells are usually selected to make obvious the higher / g
symmetry (usually rotational symmetry) that is possessed by the / c 1

lattice, which may not be immediately evident from primitive cell. a
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N =8+ 5 + . 9 lattice points/unit cell

Importance of the Number of Lattice Points

The number of lattice points tells you the number of atoms that
are required to define your basis.

If N =4, then four lattice points must be defined

Then, all you need to know if what types of atoms lie on each
point.



ARRANGEMENT OF LATTICE POINTS

Each unit cell has a lattice point located at the corner (vvw of 000). This
defines a primitive lattice (P)

Unit cells may also have them at the center of certain faces (F or C) or at
the center (I) of the unit cell.
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/ﬂT Arrangement of Lattice Points
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Lattice points are categorized based on three possible centering

(continued)

operations (base, face, and body) + primitive (simple)

arrangements
Atom
Name Symbol | #Lattice Sites/Cell | Locations
Primitive (simple) P 1 000
Body-centered I 2 000
VATV
Face-centered F 4 000
Y2150
Y50V
05
Base-centered C 2 000, ¥2%:0
B 000, ¥20v2
A 000, 0'2Y2
Rhombohedral R | 000
(this 1s a primitive cell)

*These are
known as the
basis vectors,
which we will
come back to.
*These are not
translation
vectors (R)
since they
have non-
integer values.

The complexity of the system depends upon the symmetry requirements (is it lost or
maintained?) by applying the symmetry operations (rotation, reflection, inversion and

translation).



The Five 2-D Bravais Lattices

it oy
wf/—_‘
e
l] L

05
I T

*From the previous definitions of the and seven 3-D crystal systems, we know that there are

and seven primitive unit cells (with 1 lattice point/unit cell), respectively.

*We can then ask: can we add additional lattice points to the primitive lattices (or nets), in such a way that we
still have a lattice (net) belonging to the same crystal system (with symmetry requirements)?

*First illustrate this for 2-D nets, where we know that the surroundings of each lattice point must be identical.
*\We can come up with centered rectangular net in (c) where A, B and C points have identical surroundings.
*If we try to do same thing with other 2-D nets, we find that there are no new nets to be found...

*Two important ideas are 1) it is always possible to define a primitive unit cell for every possible net and 2) if
a non-primitive cell can be found that describes the symmetry of the net (lattice), then that cell should be
used to describe the net (lattice). Since the surroundings of every lattice point must be identical, we can only
add new lattice points at centered positions.

The 5 Bravais lattices of 2-D crystals: (a) square, (b) rectangular, . .
(c) centered rectangular, (d) hexagonal and () obligue: . . . . A .
- ) . "B
Name Number of Conditions These are the 2 &0 @z 90° o fim . 900-
Bravais lattices only 5 DOS.SIble P . P . e .
— — 2-D Bravais 1 L 1
Souate 1 d1=dag,a="50 lattices (4 (a) (h) (c)
RECtEﬂlgLﬂEﬂ’ 2 ﬂl ?Eﬂz B Cr_':QD |’|m|t|Ve + E . — " - - -
Hexagonal 1 @) =dq,=120" 1 non- B 5
Oblique 1 ay#az, o 120% @ #90° | primitive) T,
. \i 120° /7
ﬂz 4 .

p. 72 in DeGraef
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R=ud+vb
° R, = 33 +2b
R, =-2a-b

This is not a 2-D Bravais Lattice (when

: : o This is a 2-D Bravais Lattice:
there is no lattice point in center of cell):

p———-a

If lattice point "~<_
in the center
then have a
P-hexagonal .-
lattice

From point 1 to 2: environment changes by reflection (mirror plane, m, half way in between), if you tie
vertical pairs of points together then you have 2-D Bravais lattice with 6 identical neighbors.



The Fourteen 3-D Bravais Lattices
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*\We can repeat this procedure in 3-D, where there are 3 possible ways to add lattice points at the center
between existing lattice points.

1. Body centering: we add a lattice site in the center of the unit cell at (¥, Y2, ¥2). For every site T there is an
additional site T+[(a+b+c)/2]. The vector | = [(a+b+c)/2 ] is body centering vector, note this is not a
translation vector of lattice since its components are non-integers. The symbol for a body centered lattice is I.
2. Face centering: we add a lattice site to the center of all faces of the unit cell at (Y2, %2, 0), (%2, 0, %2), (0, %,
1%). For every site T, there are then 3 additional sites T+[(a+b)/2 ], T+[(a+c)/2 ], and T+[(b+c)/2 ]. The
vectors C = [(a+b)/2], B = [(a+c)/2 ], A = [(b+c)/2 ] are the face centering vectors. The symbol for a face
centered lattice is F, where F=A+B+C.

3. Base centering: we add a lattice site to the center of only one face of the unit cell at (%2, %2, 0) or (*2, 0, %)

or (0, ¥, ¥2). The base centering vectors are identical to the face centering vectors, except that only one of
them is present. If the plane formed by the basis vectors a and b is centered then the lattice is known as C-
centered, if a and c is centered known as B-centered lattice and b and c is centered known as A-centered.

*\We can now apply these 5 forms of centering (I,F,A,B,C) to all 7 primitive unit cell = 5x7=35 possibilities.
*In several cases we do generate a new lattice, in other cases we can redefine the unit cell and reduce the cell

to another type. For example in tetragonal unit cells we only have P-tetragonal and I-tetragonal:




The Fourteen 3-D Bravais Lattices

(continued)

*Repeating this exercise for all types
of lattice centering, we end up with 7
additional lattice types that cannot be
reduced to primitive ones of the same
crystal system: Cm,Co,lo,Fo,lt,Ic,Fc.

Add /attice points to crystal systems

Bravais (1848) showed that there are

l

14 BRAVAIS LATTICES
Represent the only ways to arrange points periodically
in space while preserving lattice point surroundings,

symmetry and uniqueness.

14 possible lattice point-crystal system combinations

Only 14 based on 7 crystal systems +

230 SPACE GROUPS (crystal structures)

32 CRYSTAL CLASSES
14 BRAVAIS LATTICES

7 CRYSTAL SYSTEMS (shapes)

This means that there are

7 types/shapes of crystals in 3-D
from which we derive 14 types of fattices.

Crystal Systems and Bravais Lattices

syimmemny 1'€q11i1“€ ments!

*Reducing from 35 to
14 Bravais lattices
means either the unit
cell is not unique
(choose one that is
easier to work with)
and/or symmetry of
the crystal system is
lost.

System Axial lengths and angles Bravais Lattice
Lattice Symbol
Three equal axes at right angles Simple P
. P, C -
Cubic _ _q’_ _p—y _"9 0° Body-centered I
“ & E=Pr= Face-centered F
Three axes at right angles. two equal | Simple p
Tetragonal > =
- a=b#c;a=pF=y=90 Body-centered I
Simple p
, Three unequal axes at right angles Body-centered I
Orthorhombic o =
a#b#c; a=p=y=90 Base-centered C
Face-centered F
Rhombohedral Three equal axes. equally inclined .
. o - Simple R
(trigonal) a=b=c a=p=y+90
Three equal coplanar axes at 120°,
Hexagonal third axis at right angles Simple p
a=b#c; a=F=90° y =120°
Three unequal axes. one pair not at .
. . quat axes, P Simple P
Monoclinic¢ right angles
R Base-centered C
azb#c; a=y=90"=p
Three unequal axes, unequally
Triclinic inclined and none at right angles Simple p

azb#c a# f#y#+90°

“know
these”




The Fourteen 3-D Bravais Lattices

(continued)

14 Bravais Lattices
Toble 3.2 The Fourteen Crystal (Bravais) Lattices
These are /| .
the only 14 . o e .
possible 3-D e .
Bravais Simple cubic Body-centered Face-centered Simple Body-centered
; cubic (bee) cubic fec) tetragonal tetragonal
lattices
p )
. .
L
. . .
. .
Simple Body-centered Base-centered Face-centered Rhombohedral
I’y orthorhombic orthorhombic orthorhombic orthorhombic
know
JJ
ese =
Hexagonal Simple Base-centered Triclinic
monoclinic monoclinic
The Bravais lattices also represent the highest possible symmetry for the
corresponding crystal systems.
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*This is a Bravais lattice because the
6-fold coordination of each lattice point is

identical.

Remember crystal structure= lattice + basis
(monoatomic in this case), and unit cell is the
smallest portion of the lattice that contains both
basis and the symmetry elements of the lattice.

*This is a Bravais lattice because the
8-fold coordination of each lattice point
Is identical.

*Notice that point 1 (*2, %, ¥2) at cube
center and point 2 (0,0,0) at cube
vertices have an identical 8-fold
environment.

*This is a Bravais lattice because the
12-fold coordination of each lattice point
is identical.

ljffr Cubic Bravais Lattices

The P-cubic lattice

Cc

The extended
P-cubic lattice

The I—ccubic lattice

The extended
I-cubic lattice

a

The F-cubic lattice

C

The extended
F-cubic lattice
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Cubic Bravais Lattices (continued)

*Why is there no base centered (A,B, or C)-cubic lattice?
*For example, no C-cubic lattice because a) it's simplified to
P-tetragonal lattice (in red):

*Also note that b) the 3-fold symmetry (three 120° rotations)

along the {111} is lost - variant (in blue): O
*However, if you look down the {001} of 000
P-tetragonal cell (in red) the 4-fold symmetry | o e

(four 90° rotations) is present:| OO

N

'\) '\) a
{001} in simple
tetragonal cell

Note that the nomenclature used for lattices is chosen to avoid confusion with crystal
structures:
*In cubic systems: SC, FCC, and are used to describe crystal structures, or more specifically
the crystal structures created when an elemental, monoatomic basis is added to each site of the P,
F, or I-cubic lattices, respectively.

*For example, tungsten atoms added to |-cubic lattice = crystal structure
*Also, both rocksalt (e.g. NaCl) and sphalerite/zincblende (e.g. ZnS) have F-cubic lattices.
However, we do not call these FCC crystal structures, since atoms in ECC structure have 12
nearest neighbors while atoms in rocksalt structure have 6 nearest neighbors and 4 in zincblende
structure.
*Thus we call them rocksalt and zincblende crystal structures or use Strukturbericht notation. 1




ljffr Tetragonal Bravais Lattices
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*P and | tetragonal lattices are created when
axial strain is put on their respective cubic lattices.

*Why not F-cubic lattice to F-tetragonal lattice?
*Because the result is identical to the I-tetragonal
lattice, like we saw before in 3-D.

*Consider projection looking down c-axis in (a).
By drawing new lattice vectors a and b rotated cubic P tetragonal P
45° with respect to original vectors and shorter A

by a factor of V2/2, we can define a I-tetragonal
lattice from the same points in (b).

C

*So only one unique lattice is created, the stretch along the  axis
. . —_—
|-tetragonal lattice, when F and I-cubic are
strained. . b b
cubic I a tetragonal I
$—o—9—o—9—oS—9> e O e O e O e : —
b Ab Dark points lie in plane of
¢ e o e o e o c e O @ O | this slide’at c=0 and
+ o + o o b ® o o e | hollow points are at face
centered positions at c=1/2.
¢ e ® e ¢ e O O e ® @)
N
® O o o @ O

@]
i *See DeGraef or Rohrer books 12
@ (b) for remaining Bravais lattices.



U/Er Other ways to define unit cell

05
I T

*It is always possible to describe a lattice with a primitive unit cell.
*Thus, all 14 Bravais lattices can be described by primitive cells, even when they are centered (non-
primitive).
*For example, consider the non-primitive Fc (FCC) lattice:
*By selecting shorter vectors a,, a,, and a;, we can define a primitive rnombohedral lattice
with angle a=60°.
*We can draw this:

*There is also the Wigner-Seitz (WS) cell, which you will see in the Electrical Properties of Materials
class or textbook, to describe the first Brillouin zone of the reciprocal lattice.

*Brillouin zones are used in band theory to represent in reciprocal space the solutions of the wave
equations for the propagation of phonons or electrons in solids.

13



Minimum Symmetry Requirements

*Based on the symmetry operations, the minimal requirements for
the 7 crystal systems in 3-D are:

1. Triclinic, all cases not satisfying the requirements of any other system; thus there is no
symmetry other than translational symmetry, or inversion (1) or identity (1) in 3-D.

2. Monoclinic, requires either 1 two-fold axis of rotation (180°), or 1 mirror (m) plane, or 1
combined 2/m operation.

3. Orthorhombic, requires either 3 two-fold axes of rotation (180°), or 1 two fold axis of rotation
(180°) and two mirror (m) planes, or combination of 3 total two-fold rotation(s) & mirror(s).

4. Tetragonal, requires 1 four-fold axis of rotation (90°).

5. Rhombohedral (trigonal), requires 1 three-fold axis of rotation (120°) along one body diagonal.

6. Hexagonal, requires 1 six-fold axis of rotation (60°).

7. Cubic, requires 4 three-fold axes of rotation (120°) along all 4 body diagonals.
“know these”

14



