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•When repeated by successive translations 

reproduce periodic pattern.

•Multiple cells are usually selected to make obvious the higher 

symmetry (usually rotational symmetry) that is possessed by the 

lattice, which may not be immediately evident from primitive cell.
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Types of Lattices

Lattices are either:

1. Primitive (or Simple): one lattice point 

per unit cell.

2. Non-primitive, (or Multiple) e.g. double, 

triple, etc.: more than one lattice point 

per unit cell.

Ne =  number of lattice points on cell edges (shared by 4 cells)
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Lattice Points- Review
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Arrangement of Lattice Points
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Arrangement of Lattice Points

(continued)

•These are 

known as the 

basis vectors, 

which we will 

come back to.

•These are not 

translation 

vectors (R) 

since they 

have non-

integer values.

The complexity of the system depends upon the symmetry requirements (is it lost or 

maintained?) by applying the symmetry operations (rotation, reflection, inversion and 

translation).
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The 5 Bravais lattices of 2-D crystals: (a) square, (b) rectangular, 

(c) centered rectangular, (d) hexagonal and (e) oblique: 

•From the previous definitions of the four 2-D and seven 3-D crystal systems, we know that there are four

and seven primitive unit cells (with 1 lattice point/unit cell), respectively.

•We can then ask: can we add additional lattice points to the primitive lattices (or nets), in such a way that we 

still have a lattice (net) belonging to the same crystal system (with symmetry requirements)?

•First illustrate this for 2-D nets, where we know that the surroundings of each lattice point must be identical.

•We can come up with centered rectangular net in (c) where A, B and C points have identical surroundings.

•If we try to do same thing with other 2-D nets, we find that there are no new nets to be found…

•Two important ideas are 1) it is always possible to define a primitive unit cell for every possible net and 2) if 

a non-primitive cell can be found that describes the symmetry of the net (lattice), then that cell should be 

used to describe the net (lattice).  Since the surroundings of every lattice point must be identical, we can only 

add new lattice points at centered positions.

A
B

C

These are the 

only 5 possible 

2-D Bravais

lattices (4 

primitive + 

1 non-

primitive)

The Five 2-D Bravais Lattices

p. 72 in DeGraef



This is a 2-D Bravais Lattice:

This is not a 2-D Bravais Lattice (when 

there is no lattice point in center of cell):

From point 1 to 2: environment changes by reflection (mirror plane, m, half way in between), if you tie 

vertical pairs of points together then you have 2-D Bravais lattice with 6 identical neighbors.

Bravais Lattice or Not?

This is a 2-D Bravais Lattice:
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m

P-hexagonal

lattice

If lattice point 

in the center 

then have a 

P-hexagonal 

lattice
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•We can repeat this procedure in 3-D, where there are 3 possible ways to add lattice points at the center

between existing lattice points.

1. Body centering: we add a lattice site in the center of the unit cell at (½, ½, ½).  For every site T there is an 

additional site T+[(a+b+c)/2 ].  The vector I = [(a+b+c)/2 ] is body centering vector, note this is not a 

translation vector of lattice since its components are non-integers.  The symbol for a body centered lattice is I. 

2. Face centering: we add a lattice site to the center of all faces of the unit cell at (½, ½, 0), (½, 0, ½), (0, ½, 

½). For every site T, there are then 3 additional sites T+[(a+b)/2 ], T+[(a+c)/2 ], and T+[(b+c)/2 ]. The 

vectors C = [(a+b)/2 ], B = [(a+c)/2 ], A = [(b+c)/2 ] are the face centering vectors. The symbol for a face 

centered lattice is F, where F=A+B+C. 

3. Base centering: we add a lattice site to the center of only one face of the unit cell at (½, ½, 0) or (½, 0, ½) 

or (0, ½, ½). The base centering vectors are identical to the face centering vectors, except that only one of 

them is present.  If the plane formed by the basis vectors a and b is centered then the lattice is known as C-

centered, if a and c is centered known as B-centered lattice and b and c is centered known as A-centered.

•We can now apply these 5 forms of centering (I,F,A,B,C) to all 7 primitive unit cell → 5x7=35 possibilities. 
•In several cases we do generate a new lattice, in other cases we can redefine the unit cell and reduce the cell 

to another type.  For example in tetragonal unit cells we only have P-tetragonal and I-tetragonal:
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The Fourteen 3-D Bravais Lattices



•Repeating this exercise for all types 

of lattice centering, we end up with 7

additional lattice types that cannot be 

reduced to primitive ones of the same 

crystal system: Cm,Co,Io,Fo,It,Ic,Fc.

•Reducing from 35 to 

14 Bravais lattices 

means either the unit 

cell is not unique 

(choose one that is 

easier to work with) 

and/or symmetry of 

the crystal system is 

lost.
88

The Fourteen 3-D Bravais Lattices 

(continued)

“know 

these”

Represent the only ways to arrange points periodically 

in space while preserving lattice point surroundings, 

symmetry and uniqueness.
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These are 

the only 14 

possible 3-D 

Bravais 

lattices

The Fourteen 3-D Bravais Lattices 

(continued)

“know 

these”



Cubic Bravais Lattices

The extended

P-cubic lattice

•This is a Bravais lattice because the 

6-fold coordination of each lattice point is 

identical. 
Remember crystal structure= lattice + basis 

(monoatomic in this case), and unit cell is the 

smallest portion of the lattice that contains both 

basis and the symmetry elements of the lattice.

The I-cubic lattice

The extended

I-cubic lattice

•This is a Bravais lattice because the 

8-fold coordination of each lattice point 

is identical.

•Notice that point 1 (½, ½, ½) at cube 

center and point 2 (0,0,0) at cube 

vertices have an identical 8-fold 

environment.

The P-cubic lattice

The extended

F-cubic lattice

The F-cubic lattice

•This is a Bravais lattice because the 

12-fold coordination of each lattice point 

is identical.
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Note that the nomenclature used for lattices is chosen to avoid confusion with crystal 

structures:

•In cubic systems: SC, FCC, and BCC are used to describe crystal structures, or more specifically 

the crystal structures created when an elemental, monoatomic basis is added to each site of the P, 

F, or I-cubic lattices, respectively.

•For example, tungsten atoms added to I-cubic lattice = BCC crystal structure

•Also, both rocksalt (e.g. NaCl) and sphalerite/zincblende (e.g. ZnS) have F-cubic lattices.

However, we do not call these FCC crystal structures, since atoms in FCC structure have 12 

nearest neighbors while atoms in rocksalt structure have 6 nearest neighbors and 4 in zincblende

structure.

•Thus we call them rocksalt and zincblende crystal structures or use Strukturbericht notation.

•Why is there no base centered (A,B, or C)-cubic lattice?

•For example, no C-cubic lattice because a) it’s simplified to 

P-tetragonal lattice (in red):

•Also note that b) the 3-fold symmetry (three 120º rotations) 

along the {111} is lost → variant (in blue):

•However, if you look down the {001} of 

P-tetragonal cell (in red) the 4-fold symmetry 

(four 90º rotations) is present:

Cubic Bravais Lattices (continued)

1111



Tetragonal Bravais Lattices

•P and I tetragonal lattices are created when

axial strain is put on their respective cubic lattices.

•Why not F-cubic lattice to F-tetragonal lattice?

•Because the result is identical to the I-tetragonal 

lattice, like we saw before in 3-D.

•Consider projection looking down c-axis in (a).

•By drawing new lattice vectors a and b rotated 

45º with respect to original vectors and shorter 

by a factor of √2/2, we can define a I-tetragonal

lattice from the same points in (b).

•So only one unique lattice is created, the 

I-tetragonal lattice, when F and I-cubic  are 

strained.

*See DeGraef or Rohrer books 

for remaining Bravais lattices.

Dark points lie in plane of 

this ‘slide’ at c=0 and

hollow points are at face 

centered positions at c=1/2.
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Other ways to define unit cell

•It is always possible to describe a lattice with a primitive unit cell.

•Thus, all 14 Bravais lattices can be described by primitive cells, even when they are centered (non-

primitive).

•For example, consider the non-primitive Fc (FCC) lattice:

•By selecting shorter vectors a1, a2, and a3, we can define a primitive rhombohedral lattice

with angle a=60°.  

•We can draw this:

•There is also the Wigner-Seitz (WS) cell, which you will see in the Electrical Properties of Materials 

class or textbook, to describe the first Brillouin zone of the reciprocal lattice.

•Brillouin zones are used in band theory to represent in reciprocal space the solutions of the wave 

equations for the propagation of phonons or electrons in solids.
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•Based on the symmetry operations, the minimal requirements for 

the 7 crystal systems in 3-D are:

1. Triclinic, all cases not satisfying the requirements of any other system; thus there is no 

symmetry other than translational symmetry, or inversion (1) or identity (1) in 3-D. 

2. Monoclinic, requires either 1 two-fold axis of rotation (180°), or 1 mirror (m) plane, or 1 

combined 2/m operation. 

3. Orthorhombic, requires either 3 two-fold axes of rotation (180°), or 1 two fold axis of rotation 

(180°) and two mirror (m) planes, or combination of 3 total two-fold rotation(s) & mirror(s). 

4. Tetragonal, requires 1 four-fold axis of rotation (90°). 

5. Rhombohedral (trigonal), requires 1 three-fold axis of rotation (120°) along one body diagonal. 

6. Hexagonal, requires 1 six-fold axis of rotation (60°). 

7. Cubic, requires 4 three-fold axes of rotation (120°) along all 4 body diagonals. 

Minimum Symmetry Requirements

“know these”


